

Machine Learning and Supercomputing to Predict Corrosion/Oxidation of High-Performance Valve Alloys

Dongwon Shin (shind@ornl.gov)
Oak Ridge National Laboratory
June 13th, 2019

Project ID# 162

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start: Oct 2018
- Project end: Sep 2021
- Percent complete: 15%

Budget

- Total project funding: \$1,935K
 - DOE share: \$1,500K
 - Cost share: \$ 435K
- Awarded for 3 years (FY19-FY21)
- FY 2019: \$500K

Barriers

- Absence of physics-based model to predict hightemperature alloy oxidation
- Lack of fundamental alloy oxidation data (e.g., atomic mobilities in oxides, oxygen permeability)

Partners

- ASM International
- Penn State University
- Federal-Mogul Powertrain

Increased exhaust temperature for engine efficiency will require advanced corrosion/oxidation-resistant alloys

Oxidation damage in IN751 valves at ~850°C*



*estimated

M.I. Khan et al. Engineering Failure Analysis 85 (2018) 77–88

Natural gas engine operated for 10,000 h

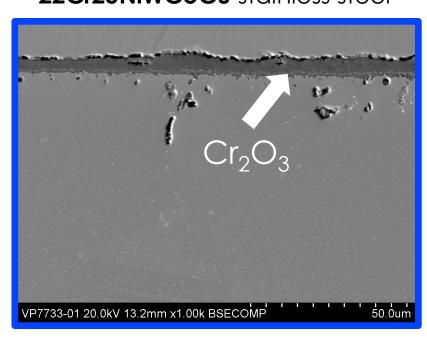
Strategy to mitigate high-temperature oxidation?

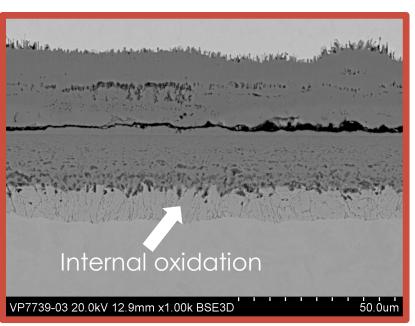
Thermally grown thin and coherent oxide scales to protect alloys from extreme environments

Sanicro25

22Cr25NiWCoCu stainless steel

<u>Gr91</u> **9Cr1Mo** steel





Good

Bad

Is it possible to predict high-temperature alloy oxidation?

First-principles bottom-up design of oxidationresistant multi-component alloy is not yet possible

Alloy thermodynamics

alloy phase diagrams

Alloy diffusion kinetics

precipitate coarsening

Oxide thermodynamics

oxide phase diagrams

Oxide diffusion kinetics

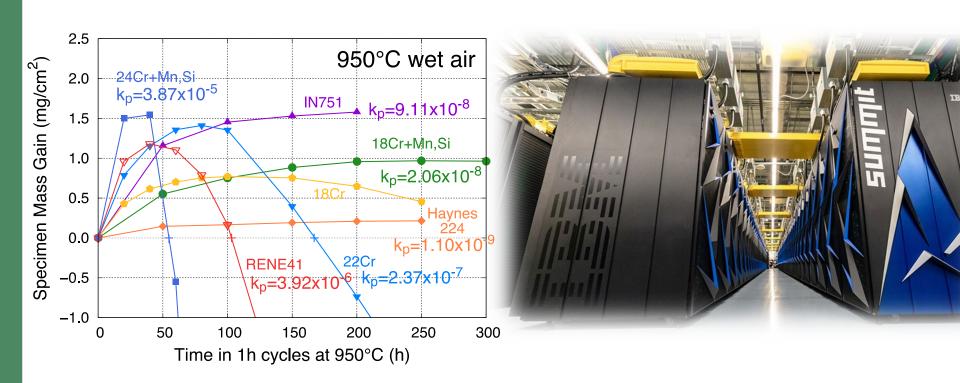
- metal cation mobilities
- grain boundary diffusion

Alloy thermodynamics with oxygen

- oxygen permeability
- oxygen mobilities

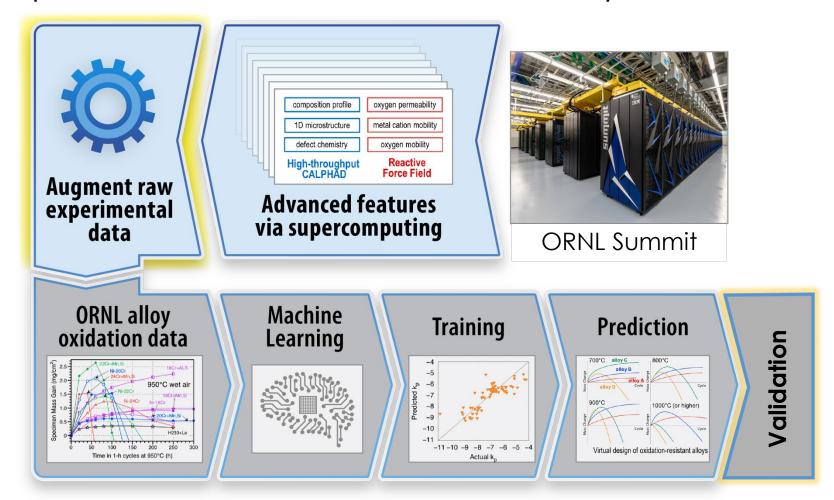
Predictive models for alloy oxidation are not available due to the lack of fundamental experimental data

Leveraging ORNL's high-quality experimental oxidation data with modern supercomputing



This project aims to develop predictive models as accurate as cyclic oxidation experiments relevant to automotive applications

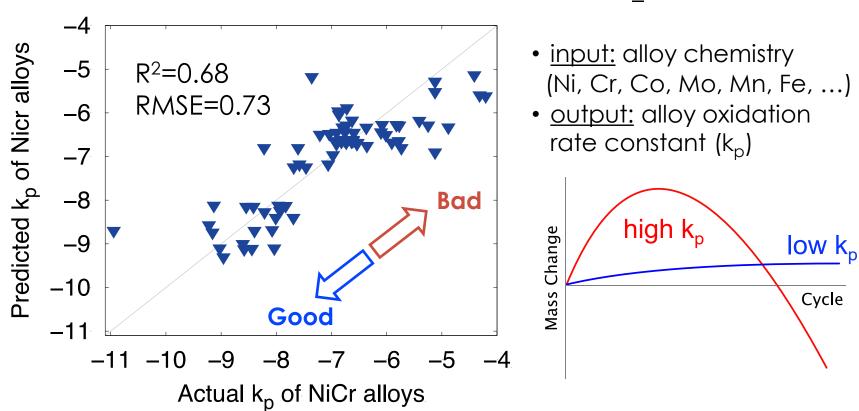
ORNL's 20yrs+ high-quality experimental data coupled with advanced scientific alloy features



Proposed workflow is anticipated to go beyond Ni-Cr alloys (e.g., stainless steel and Ni-Al alloys)

Successful training of preliminary machine learning models to predict rate constant (k_p)

78 Ni-Cr alloys at 950°C (10% H₂O)



Predictive, but features other than compositions are needed to better understand fundamental alloy oxidation mechanisms

Computational
Thermodynamics/
Diffusion Kinetics

Data Analytics and Supercomputing

Data Repository

World-class research teams to develop alloy oxidation model with 20+ years data and supercomputer

Atomistic Simulations

Finite Element Analysis

Monthly all-hands conference call, biweekly subtask team meetings

Project will focus on generating alloy features to be correlated with ORNL's high-quality experimental data

High-throughput CALPHAD

- Populate <u>scientific</u> <u>alloy features</u>
 - Depletion of major elements (e.g., Cr)
 - Dissolution of key strengthening precipitates
 - Temperature excursion

High-fidelity Atomistic Simulations

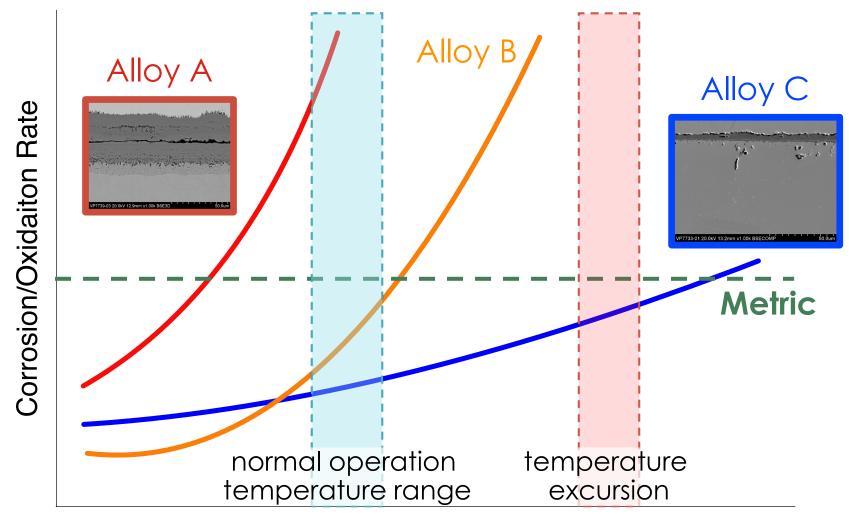
- Generate
 <u>fundamental</u>
 <u>oxidation data</u> via
 Reactive Force Field
 (ReaxFF) simulations
 - Oxygen permeability
 - Grain boundary diffusion

Data analytics

- Analyze correlation between input features and alloy oxidation
- Train machine learning models with identified <u>key</u>

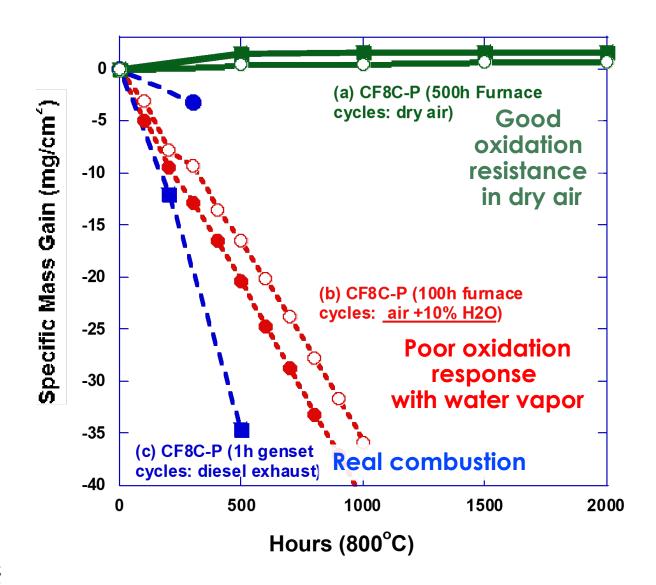
<u>features</u>

Develop practical alloy oxidation model with 20yrs+ ORNL data, machine learning and supercomputing

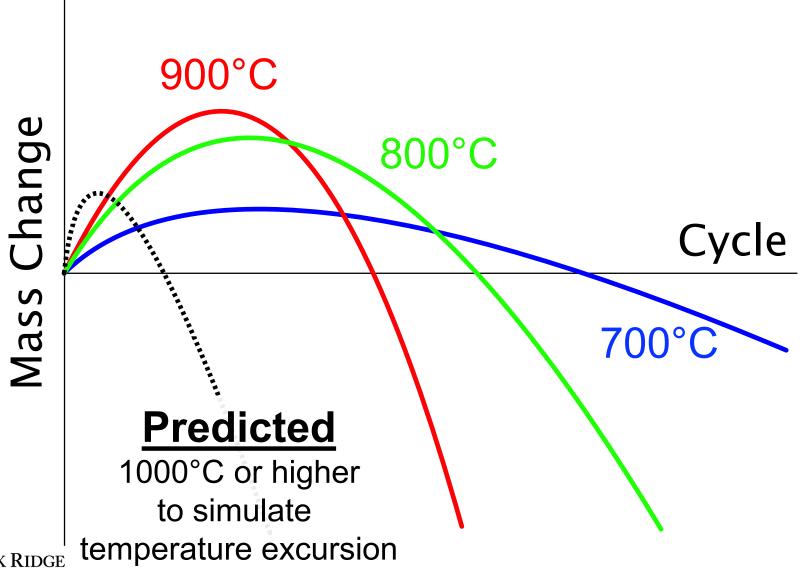


Technical Backup

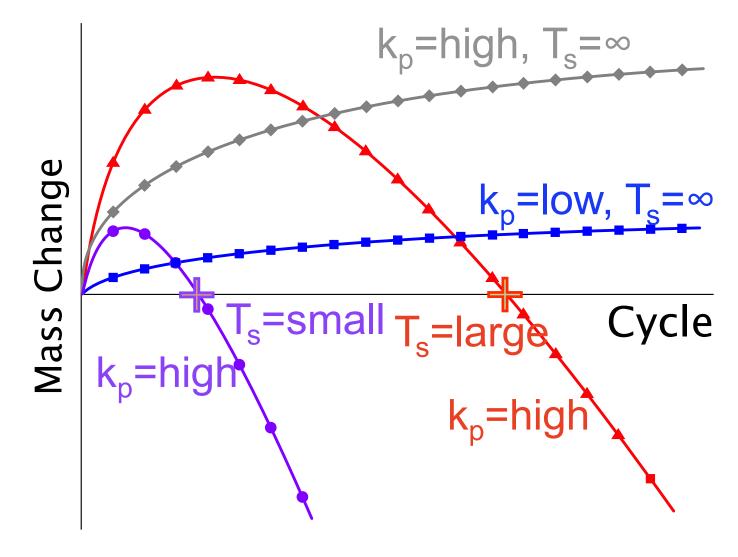
Laboratory simulated 10% water vapor testing can mimic real combustion environment



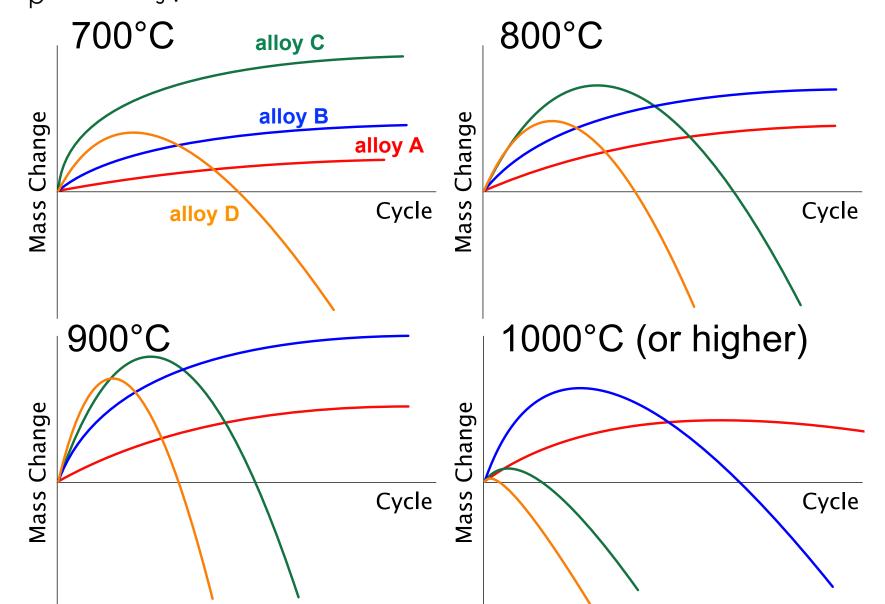
Temperature effect on oxidation behavior of high-temperature alloys



We propose using k_p (rate constant) and T_s (time/cycle to spall) to represent oxidation behavior of alloys



Alloy chemistry and temperature dependent k_{p} and T_{s} prediction



Catalog of ORNL's experimental data for 10% H₂O cyclic oxidation NiCr alloys: total 337 data

Temp (°C)	Model alloys	Commercial alloy data*	
800	32		
850	23	15	N80, N90, 31V & 751 (2~4) R41 & WASPalloy (1)
900	40	45	247 (21), 751, 214, 31V, R41, 282, N80 & WASPalloy (2~4), U520, U720, 230, N90 (1)
950	18	64	751 (11), N80 (9), U520 (6), 247 (5), R41 (5), 214, N90, 246, 713, 282 & U720 (2~4) 230 & WASPalloy (1)
1000		8	246, 247 & 713 (2~3), N90 (1)
1050	4		
1100	16	42	247 (42)
1150	15	12	247, 214, 224 & 230 (2~4), 713 (1)
1200		6	247 (6)

